Profiling of ligand-receptor induced signalling- a novel protein chip technique
نویسندگان
چکیده
ellular signalling pathways are the master controls of the biology of the cell, which includes cell communication, growth, death, and differentiation. The activities of these signalling proteins directly influence gene function by regulation of the signalling pathways that mediate cellular responses. Recent advanced techniques have given rise to a number of emerging tools for the analysis of cellular signalling that profile the proteome or the protein complement of the genome. However, these tools for signal profiling still face significant challenges such as sensitivity, specificity and be a high throughput method before they are widely adopted. Sensitivity issues are paramount in detecting signalling proteins that are normally in low amounts. Conventional protein chip technology promises to be a powerful tool for large scale high-throughput proteome profiling but there are still significant drawbacks. Here we report the development and application of a novel multiplexed and high-throughput platform for the quantitative profiling of activated intracellular signalling proteins subsequent to ligand-receptor induced signalling. This spatially addressable biochip platform will allow comprehensive mapping of interconnected signal pathways, through identification of key functional signalling proteins (‘nodes’) in each pathway and quantifying their state of activity. Index Term: Antibody microarray, Cell signalling, Protein chip, Proteomics
منابع مشابه
I-34: Steroid Hormone Signalling at the FetomaternalInterface
Background: Progesterone is indispensable for differentiation of human endometrial stromal cells (HESCs) into decidual cells, a process that critically controls embryo implantation. However, HESCs also abundantly express androgen receptors (AR), yet the role of this member of the superfamily of ligand-dependent transcription factors in the decidual process remains poorly elucidated. Materials a...
متن کاملNovel level of signalling control in the JAK/STAT pathway revealed by in situ visualisation of protein-protein interaction during Drosophila development.
It is commonly accepted that activation of most signalling pathways is induced by ligand receptor dimerisation. This belief has been challenged for some vertebrate cytokine receptors of the JAK/STAT pathway. Here we study whether DOME, the Drosophila receptor of the JAK/STAT pathway, can dimerise and if the dimerisation is ligand-dependent. To analyse DOME homo-dimerisation, we have applied a b...
متن کاملI-34: Interactorme of Human Embryo Implan Implantation:Pathways,Networks
Background: A prerequisite for successful embryo implantation is adequate preparation of receptive endometrium and the establishment and maintenance of a viable embryo. The success of implantation further relies upon a two-way dialogue between the embryo and uterus. However, molecular bases of these preimplantation and implantation processes in humans are not well known. Materials and Methods: ...
متن کاملGenome-wide approaches for identification of nuclear receptor target genes
Large-scale genomics analyses have grown by leaps and bounds with the rapid advances in high throughput DNA sequencing and synthesis techniques. Nuclear receptor signaling is ideally suited to genomics studies because receptors function as ligand-regulated gene switches. This review will survey the strengths and limitations of three major classes of high throughput techniques widely used in the...
متن کاملBiochemical Aspects of Protein Changes in Seed Physiology and Germination
Seed storage proteins are synthesized as sources of carbon, nitrogen and sulfur for the next generation of plants. Reactive oxygen species serve as second messengers for signal transduction; however, molecular targets of oxidant signaling have not been defined. Here, many researchers showes that ligand–receptor mediated signaling promotes reactive oxygen species– dependent protein carbonylation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003